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1 Expressing Hamilton-Jacobi Equations in Terms of Cal-
culus of Variations

1.1 Recap: Hamilton-Jacobi equations

Last time, we started talking about Hamilton-Jacobi equations, as an example of first order
PDEs: {

ut +H(x,Du) = 0

u(0) = u0

The characteristics for this system were given by
u̇ = Hp(x, p)

ṗ = −Hx(x, p)

ż = Hp(x, p) · p−H(x, p)

with initial data {
x(0) = x0

p(0) = ∂xu0.

The equations for u̇ and ṗ are called the Hamilton equations. We noticed that we only
need to solve them first to get the characteristics, and then we can integrate the ż equation
to solve it after the fact.

1.2 Calculus of variations

Today, we will be looking at the calculus of variations. Here is the setup: We have a
function L(x, q) we call the Lagrangian, and to each function x : [0, T ]→ R, we associate
to this function an action functional

L(x) =

∫ T

0
L(x, ẋ) dt.
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The question we want to ask is: what are the minimizers of L? We are looking for

min
x:[0,T ]→R

L(x).

We can think of L giving the cost of the trajectory x. So we want to find the most efficient
trajectory x.

If we were just minimizing a function in Rn, we would look for critical points. In
particular, for f : Rn → R, a minimum point in a critical point if ∇f = 0. How do we do
this in the case of our functional? We can talk in terms of directional derivatives. Replace
x by x+hy and look at the map h 7→ L(x+hy), where h = 0 is a minimum point. Assume
that our perturbation y is compactly supported. In this case, at h = 0, we have

0 =
d

dh
L(x+ hy)

=
d

dh

∫ T

0
L(x+ hy, ẋ+ hẏ) dt

=

∫ T

0
Lx(x, ẋ) · y + Lq(ẋ) · ẏ dt,

where we are using q as a placeholder for the second variable, as we did with p before.
This holds for all y ∈ C∞

0 ([0, T ]). To deal with the ẏ term, we integrate by parts (using
the compact support assumption):

=

∫ T

0
y(Lx(x, ẋ)− d

dt
Lq(x, ẋ)) dt

when integrated against any function with compact support, the part inside the parentheses
gives 0. So it must equal 0, Thus, we have actually proven a theorem:

Theorem 1.1 (Euler-Lagrange equation). x is a critical point for L if and only if it solves

Lx(x, ẋ)− d

dt
Lq(x, ẋ) = 0.

Remark 1.1. The PDE analogue takes a function u : Rn → R and gives the Euler-
Lagrange equation

Lx(u, ∂u)− ∂jLqj (u, ∂u) = 0,

which is a second order PDE.

Remark 1.2. Our perturbation does not change the values at the endpoints x(0), x(T ),
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so it gives critical points in a context where x(0) and x(T ) are fixed.

Remark 1.3. Suppose L = L(ẋ) is the following “double well potential.”

Suppose also that x(0) = x(T ). We want to minimize
∫ T

0 L(ẋ) dt ≥ 0. Can we achieve 0?
We can make a line with slope a and then a line with slope b to get 0 as the minimum
(notice that this is not differentiable!). Alternatively, we can alternate between lines of
slope a and b in any number of ways as follows:

So we get that the infimum is 0 (since we can approximate any piecewise function by
smoothing out the corners), and the minimum is 0 if we allow for any Lipschitz function
x. In fact, all trajectories with slopes between [a, b] are limiting minimizers. This means
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we are actually dealing with an effective Lagrangian Leff with the hump between a and
b flattened out. The effective Lagrangian Leff is the convex envelope of L.

If we had another Lagrangian like the following, could we again look at the convex
envelope?

Suppose we add a linear constant to get L̃(q) = L+c ·q. Then we get the following picture,
which is the same as before:

So the effective Lagrangian must be convex as a function of q. For PDEs, convexity is no
longer required. Instead, we require rank one convexity, which is given by convexity in
one variable at a time.

Example 1.1. Here is an example that comes from classical mechanics. Suppose we have
a particle with trajectory x(t) moving in a conservative force field F = ∇φ, where φ is the
potential. Then we have the Lagrangian

L(x, q) =
1

2
mq2︸ ︷︷ ︸

kinetic energy

− φ(x)︸︷︷︸
potential energy

,

where we have φx = d
dt(mẋ), which we can write as m · ẍ = F (x), which is Newton’s law.
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1.3 Connecting the Hamilton-Jacobi equations to the Euler Lagrange
equations

Returning to Hamilton-Jacobi equations, we have x, p with the function H, and we want
to relate this to the x, q = ẋ and L in the Euler-Lagrange equation. We can think of the
Euler-Lagrange equation as a system for x and q via{

ẋ = q
d
dtLq(x, q) = Lx.

We want to let p = Lq(x, q). For this to make sense, we need q 7→ Lq(x, q) to be a
diffeomorphism from Rn → Rn for fixed x.

Proposition 1.1. If L : Rn → R is strictly convex and coercive (meaning limq→∞
L(q)
|q| =

∞), then q 7→ Lq is a diffeomorphism.

Proof. Injectivity: L is strictly convex, so the graph of L is above its tangent lines at points
of nonintersection:

L(y) > L(x) + (y − x)DL(x), y 6= x.

We can use this to write

(y − x)(DL(y)−DL(x)) > 0, y 6= x.

This gives injectivity.
Surjectivity: We want to minimize L(x, q)−p ·q. If a minimum exists, then the gradient

must equal 0:
Lq(x, q) = p,

which is our surjectivity. Why must the minimum exist? This is because limq→∞ L(x, q)−
p · q =∞ by coercivity.

To check that this is a local diffeomorphism, the differential of q 7→ Lq(x, q) is Lqq ≥ 0.
In fact, by strict convexity, this is > 0.

So we have p = Lq(x, q). We will define H(x, p) = maxq p · q−L(x, q), Note that this is
the same quantity we dealt with in the above proof. The functions p · q−L(x, q) are linear
in p, so this maximum is convex.

Proposition 1.2. H is convex and coercive.

Proof. This comes from the strict convexity and coercivity of L.

Proposition 1.3.
q = Hp(x, p).
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Proof. This is a maximum, so H(p) + L(q) − pq ≤ 0, with equality if p = Lq(x, q). Now
fix q and vary p! Then p is a maximum point for this expression when the derivative
Hp(p)− q = 0.

Now let’s change our variables: The Euler-Lagrange equations say

Lx(x, q)− d

dt
Lq(x, q)︸ ︷︷ ︸

p

= 0

So we get {
ṗ = Lx(x, q)

?
= −Hx(x, p)

ẋ = q = Hp(x, p).

We have
H(x, p) + L(x, q)− p · q ≤ 0,

If we think of p = p(x, q), we can take d
dx to get

Hx(x, p) + Lx(x, q) + (Hp(x, p)− q)︸ ︷︷ ︸
=0

·∂p
∂q

= 0.

So this gives us our relationship between Hx and Lx.
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